Reliability Analysis of Data Storage Systems
نویسنده
چکیده
Modern data storage systems are extremely large and consist of several tens or hundreds of nodes. In such systems, node failures are daily events, and safeguarding data from them poses a serious design challenge. The focus of this thesis is on the data reliability analysis of storage systems and, in particular, on the effect of different design choices and parameters on the system reliability. Data redundancy, in the form of replication or advanced erasure codes, is used to protect data from node failures. By storing redundant data across several nodes, the surviving redundant data on surviving nodes can be used to rebuild the data lost by the failed nodes if node failures occur. As these rebuild processes take a finite amount of time to complete, there exists a nonzero probability of additional node failures during rebuild, which eventually may lead to a situation in which some of the data have lost so much redundancy that they become irrecoverably lost from the system. The average time taken by the system to suffer an irrecoverable data loss, also known as the mean time to data loss (MTTDL), is a measure of data reliability that is commonly used to compare different redundancy schemes and to study the effect of various design parameters. The theoretical analysis of MTTDL, however, is a challenging problem for non-exponential real-world failure and rebuild time distributions and for general data placement schemes. To address this issue, a methodology for reliability analysis is developed in this thesis that is based on the probability of direct path to data loss during rebuild. The reliability analysis is detailed in the sense that it accounts for the rebuild times involved, the amounts of partially rebuilt data when additional nodes fail during rebuild, and the fact that modern systems use an intelligent rebuild process that will first rebuild the data having the least amount of redundancy left. Through rigorous arguments and simulations it is established that the methodology developed is well-suited for the reliability analysis of real-world data storage systems. Applying this methodology to data storage systems with different types of redundancy, various data placement schemes, and rebuild constraints, the effect of the design parameters on the system reliability is studied. When sufficient network bandwidth is available for rebuild processes, it is shown that spreading the redundant data corresponding to the data on each node across a higher number of other nodes and using a distributed and intel-
منابع مشابه
A statistical analysis framework for bus reliability evaluation based on AVL data: A case study of Qazvin, Iran
Reliability is a fundamental factor in the operation of bus transportation systems for the reason that it signifies a straight indicator of the quality of service and operator’s costs. Todays, the application of GPS technology in bus systems provides big data availability, though it brings the difficulties of data preprocessing in a methodical approach. In this study, the principal component an...
متن کاملA Non-MDS Erasure Code Scheme for Storage Applications
This paper investigates the use of redundancy and self repairing against node failures indistributed storage systems using a novel non-MDS erasure code. In replication method, accessto one replication node is adequate to reconstruct a lost node, while in MDS erasure codedsystems which are optimal in terms of redundancy-reliability tradeoff, a single node failure isrepaired after recovering the ...
متن کاملEvaluation of Energy Storage Technologies and Applications Pinpointing Renewable Energy Resources Intermittency Removal
Renewable energy sources (RES), especially wind power plants, have high priority of promotion in the energy policies worldwide. An increasing share of RES and distributed generation (DG), should, as has been assumed, provide improvement in reliability of electricity delivery to the customers. Paper presented here concentrates on electricity storage systems technologies and applications pinpoint...
متن کاملEvaluation of Energy Storage Technologies and Applications Pinpointing Renewable Energy Resources Intermittency Removal
Renewable energy sources (RES), especially wind power plants, have high priority of promotion in the energy policies worldwide. An increasing share of RES and distributed generation (DG), should, as has been assumed, provide improvement in reliability of electricity delivery to the customers. Paper presented here concentrates on electricity storage systems technologies and applications pinpoint...
متن کاملDetailed Modeling and Novel Scheduling of Plug-in Electric Vehicle Energy Storage Systems for Energy Management of Multi-microgrids Considering the Probability of Fault Occurrence
As an effective means of displacing fossil fuel consumption and reducing greenhouse gas emissions, plug-in electric vehicles (PEVs) and plug-in hybrid electric vehicles (PHEVs) have attracted more and more attentions. From the power grid perspective, PHEVs and PEVs equipped with batteries can also be used as energy storage facilities, due to the fact that, these vehicles are parked most of the ...
متن کامل